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SUMMARY 

 

 

Sampling programs must take into account balancing the costs of operation with the 

necessity of accurately characterizing a contaminated site. Sampling designs that call for 

hundreds of samples will often be pared down drastically due to cost-cutting procedures. The 

samples that are implemented must then be optimally placed in order to capture the necessary 

information at a site. This often does not occur and crucial information is lost. The objective of 

this study was to assess the applicability of the Local Index of Spatial Association (LISA) 

secondary sampling methods provided by Spatial Analysis and Decision Assistance (SADA) 

software using actual data from a United States Environmental Protection Agency (USEPA) 

Superfund site, as well as to identify and optimize the critical parameters of these LISA methods 

to gain a cost effective, practical, and reliable method to place secondary samples that will 

ensure the characterization of the spatial distribution of contamination. 

The limitations of the existing LISA parameters in SADA were observed. The LISA 

search window greatly affects the outcome of secondary sample designs. Guidelines were 

developed by mimicking real world conditions and applying them to the SADA parameters and 

using an iterative function for the LISA search window to develop a potential site sample 

distribution for each LISA secondary sample design. A methodology is recommended to reduce 

the redundancies that occur within the site sample distribution and that subsequently occur 

within the final secondary site sample design. It appears that the guidelines presented in this 

paper could make SADA a cost effective tool for use in Phase III and Phase IV environmental 

site assessments, brownfield redevelopment, or other environmental risk management or site 

remediation situations. 



 

1 

 

I. INTRODUCTION 

 

The purpose of a sampling program is to produce a set of samples representative of the 

source under investigation. The objective of sampling for hazardous wastes is to acquire 

information that will assist investigators in identifying the presence of hazardous compounds and 

the extent to which these compounds have become integrated into the medium under 

investigation. This information has the potential to be used in future litigations or to assist in the 

development of remedial actions (USEPA, 1983). 

The USEPA, in a document detailing the characterization of hazardous waste sites, 

defines the term “sample” as simply a representative part of an object to be analyzed. The 

document (USEPA, 1983) qualifies this definition further by considering several criteria: 

 Representativeness—“…the sample needs to be chosen so that it possesses the same 

qualities or properties as the material under consideration” (p. 2). 

 Sample size—too large or too small is impractical. 

 Maintenance of sample integrity—the sample must retain the properties of the parent 

object. 

 Frequency of subsamples—is the material homogenous or heterogeneous and should 

a composite sample be taken? 

According to Gilbert and Pulsipher (2005, 27), “[r]epresentative environmental data are essential 

for making defensible environmental decisions.” They go on to say that sampling variability is 

due to the inherent variability of the environmental target population over space and time, the 

sample design, and the number of samples. 
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Barth and Mason (1984, 98) outline specific objectives when sampling a hazardous site: 

 To determine the levels of contaminants and their spatial and temporal distribution. 

 To determine the source, transport path, or receptor for a pollutant. 

 To determine the presence of known or unknown contaminants in comparison to their 

presence in an appropriate background area. 

 To provide input into risk assessments. 

 To measure the effectiveness of control actions. 

 To assist in a model validation study. 

A major component, and perhaps the most critical risk for assessment determination, of sampling 

a hazardous site is the determination of the levels of contaminants and their spatial distribution.  

Without a practical approach it may be difficult and cost prohibitive to optimally achieve the 

above objectives when sampling a site. Cox, Cox, and Ensor (1995) point out that an exhaustive 

sampling procedure may not be feasible due to the high cost of obtaining and analyzing samples.  

Sample design, in this case, entails balancing the costs of acquiring information with the costs of 

making mistakes due to insufficient information. One of the main obstacles to obtaining 

representative samples is the lack of understanding of the effects of spatial variability and the 

spatial distribution of contaminants. 

Superfund and brownfield sites are unique in terms of the spatial distribution of 

contaminants present and their potential health risks, so risk assessments are conducted on a site-

by-site basis. Given the uncertain nature of enforceable and unenforceable soil standards and 

background characterizations, an optimal methodology is necessary for a higher degree of 

certainty during the risk assessment and clean-up process. In addition, a methodology 
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representing an optimized rational sampling plan should demonstrate economic and scientific 

advantages (Osiecki, 2011).   

Current regulations, both federal and state, related to certain sites, such as brownfields, 

contain inherent problems. Primarily, risk assessment measures, which would account for the 

spatial distribution of the contaminants, are not prominently factored into the process. Public 

domain software programs, such as SADA, have been shown to be useful in identifying sampling 

locations by taking into account information gained by previous sample studies. Spatial Analysis 

and Decision Assistance software is a cost effective and reliable tool for developing a 

comprehensive approach to developing sample designs. The spatially defined information would 

allow site investigators to visualize the extent of the contamination and minimize uncertainty 

while providing accurate results to reduce costs during data collection and remediation. Spatial 

Analysis and Decision Assistance is a useful tool in risk assessment and discovering the spatial 

distribution of contaminants. In particular, this has applicability for brownfield redevelopment 

and site characterization (Sambanis, 2012). 

Spatial Analysis and Decision Assistance is developed by the University of Tennessee in 

Knoxville and is funded by the USEPA and the United States Nuclear Regulatory Commission 

(USNRC). Spatial Analysis and Decision Assistance is a free software program that incorporates 

tools from environmental assessments fields, such as integrated modules for visualization, 

geospatial analysis, statistical analysis, human health risk assessment, ecological risk assessment, 

cost/benefit analysis, sampling design, and decision analysis, in order to effectively characterize 

a contaminated site, assess risk, determine the location of future samples, and design remedial 

action. Spatial Analysis and Decision Assistance provides a number of useful applications, one 

of which is secondary sampling design. Secondary sampling designs are often applied after some 
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data or other information was obtained. The general objective is to further refine the model or the 

decision in a very specific way. Secondary designs can either be point (sample) or model 

(geospatial) based (SADA, 2008).  Spatial Analysis and Decision Assistance offers eight 

secondary sampling methods: 

 Judgmental Design—can be classified as either initial or secondary and relies 

completely on the user to place samples based on professional judgment. 

 Threshold Radial (also known as Adaptive Cluster Sampling)—places samples in a 

radial pattern around data points that exceed a decision threshold. The user has 

control over the pattern of the surrounding new sample points. 

 Adaptive Fill Design—places samples in the largest spatial gaps among data points. 

 Ripley’s K—is based on Ripley’s K map. The Ripley’s K statistic is a measure of 

neighborhood sampling density. The Ripley’s K design locates samples in those areas 

with the lowest sampling density. 

 Moran’s I—places samples in areas of high local sample variance as defined by 

Moran’s I map. The idea is to collect more data in those locations where greater 

heterogeneity (i.e., uncertainty or variability) exists. 

 Geary’s C—places samples in areas with greater (in magnitude) negative correlation 

among samples found in the search neighborhood. Similar to Moran’s I; the idea is to 

collect more data in those locations where greater heterogeneity exists. The difference 

between this approach and Moran’s I is that heterogeneity (and/or uncertainty) is 

measured not by local variance but local correlation. 

 High Value—places samples at nodes with the highest modeled values. 
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 Area of Concern (AOC)—places samples along the boundary line in the AOC result.  

Nodes that have a value closest to the decision criteria are the targets of the design. 

They are selected in order to more readily distinguish between contaminated and 

uncontaminated zones (SADA, 2008). 

Spatial Analysis and Decision Assistance offers three LISA secondary sample designs, 

which are Ripley’s K, Moran’s I, and Geary’s C. The interest in the LISA designs stems from 

their ability to give an indication of the extent of spatial clustering, or identifying what are 

known as hot spots. 
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II. A REVIEW OF SITE SAMPLING THEORY 

 

Sampling methodologies espoused by entities such as USEPA are generally separated 

into two categories: Classical Sampling Theory and Geostatistical Theory. What follows is a 

review of each theory as well as the general strengths and weaknesses of each. In addition, both 

theories are directly compared to each other and their differences outlined. Finally, brief 

consideration is given to designs that incorporate elements from both theories. 

 

A.   Classical Site Sampling Theory 

Sampling designs such as random sampling, systematic sampling, and stratified 

sampling—often employed by USEPA at Superfund sites—are based on probability sampling 

theory and have the following mathematical properties in common: 

 A set of distinct samples can be defined, S1, S2, …, Sv, which the procedures are 

capable of selecting if applied to a specific population. We can say precisely what 

sampling units belong to S1, to S2, and so forth (Cochran, 1977). 

 Each possible sample Si is assigned a known probability of selection i (Cochran, 

1977). 

 One of the Si is selected by a random process in which each Si receives its 

appropriate probability i of being selected. As an example, if we had three samples 

we might assign equal probabilities to them. The draw can then be made by choosing 

a random number between 1 and 3.  If this number is j, Sj is the sample that is taken 

(Cochran, 1977). 
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 The method for computing the estimate from a sample must be stated and must lead 

to a unique estimate for the specified sample. As an example, the estimate could be 

the average of the measurements on the individual units in the sample (Cochran, 

1977). 

Probability sampling refers to methods that satisfy these properties. The frequency 

distribution of the estimates these methods generate can be calculated if the sampling procedures 

are repeatedly applied to the same population. We then know how frequently any particular 

sample Si will be selected, and we know how to calculate the estimate from the data in Si 

(Cochran, 1977). 

 This theory assumes that sample estimates are approximately normally distributed. With 

a normally distributed estimate, the whole shape of the frequency distribution is known if the 

mean and standard deviation, or variance, is known (Cochran, 1977). A problem occurs with this 

assumption, however, when applied to contaminated sites since environmental contaminants tend 

to be lognormally distributed, or, highly positively skewed to the right. 

 

1.  Simple random sampling 

According to Cochran (1997, 18), “[s]imple random sampling is a method of 

selecting n units out of the N such that every one of the NCn distinct samples has an equal chance 

of being drawn,” where N refers to the population, C refers to the value of the individual, and n 

refers to the sample number. The units of the population are numbered from 1 to N, and a series 

of random numbers between 1 and N is then drawn, either by a random number table or a 

computer program that produces one. Typically, sampling without replacement is the method 

used, which means that at any draw the process used must give an equal chance of selection to 
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any number in the population not already drawn, and numbers already drawn are removed from 

the population for all subsequent draws. 

The USEPA states that simple random sampling is generally employed when little 

information exists concerning the material or location. It is effectively employed when the 

population of available sampling locations is large enough to lend statistical validity to the 

random selection process (USEPA, 1983). Elsewhere, USEPA states that randomization is 

necessary to make probability or confidence statements about the results of the sampling. 

Judgment sampling
1
 has no randomization component, but may be justified for preliminary 

assessment and site investigation stages if the sampler has substantial knowledge of the sources 

and history of contamination (USEPA, 1989a). 

Simple random sampling is considered most useful when the population of interest is 

relatively homogenous and no major patterns of contamination or hot spots
2
 are expected. Many 

hazardous waste sites, however, are likely to contain one or more hot spots. To combat this, 

USEPA suggests using adaptive cluster sampling. This entails using simple random sampling to 

take n samples, and additional samples are taken at nearby locations where measurements exceed 

a particular threshold value. Additional sampling is driven by the results of the initial random 

sample. Adaptive cluster sampling is useful for delineating the boundaries of hot spots. Simple 

random sampling, due to its non-symmetric pattern, may miss pockets of higher concentration 

(USEPA, 2002).   

 

______________________________________________________________________________ 
1 United States Environmental Protection Agency defines judgment sampling as a sample of data selected according to non-probabilistic methods 

(USEPA, 1989a). 
 

2 Hot spots are localized circular or elliptical areas with concentrations exceeding the cleanup standard. These areas are either a volume defined 

by the projection of the surface area through the soil zone that will be sampled or a discrete horizon within the soil zone that will be 

sampled (USEPA, 1989a). 
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Gilbert and Pulsipher (2005) suggest that in order to find hot spots efficiently, simple 

random sampling should be avoided and a systematic sampling design adopted. They also 

identify adaptive cluster sampling as a viable tool to delineate hot spots.  

Cox et al. (1995) elaborate on hot spots: 

 

Hot spots are often selected using expert or prior knowledge, such as knowledge of 

sources of the contamination or topography or by visual inspection.  This may be 

augmented by random grid sampling.  A pattern for the contamination (e.g., elliptical) 

may be assumed, as well as the relative size of hot spots to grids.  To the extent that true 

hot spots are located, hot spot sampling addresses the problem of area heterogeneity. Hot 

spot sampling is simple to execute, often yields a large number of samples, and is 

supported by well-documented procedures (Gilbert, 1987). However, it can be costly, 

and, for Superfund applications, results must be reinterpreted in terms of average 

contamination. (21) 

 

 

A drawback, however, to adaptive cluster sampling is that as additional rounds of sampling and 

analysis accumulate to detect the shape of the hot spot, so too will the time and costs associated 

with the multiple phases. The process of sampling, testing, quality control, resampling, and 

testing could take considerable time. Quick and inexpensive field measurement capabilities must 

be available to deter total sampling costs from growing too large. In addition, the rule is that the 

process stops when no more units are found with the characteristic of interest. Thus, the final 

overall sample size is of unknown quantity, and the total cost is also an unknown quantity 

(USEPA, 2002). Cox et al. (1995) suggest that current theory may need to be extended (such as 

adaptive sampling combined with line-transect sampling) to further the use of adaptive sampling 

in the spatial context. 

Despite this, USEPA acknowledges that multiple phase sampling can be effective. The 

first, or preliminary, phase can be designed to develop estimates of the variability found in the 

soil/waste combination, and to work out the necessary sampling protocols for later phases. Later 
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sampling can be more efficient in the use of both time and financial resources to meet the goals 

of the sampling program (USEPA, 1992).   

 

2.   Stratified random sampling 

In stratified sampling, the population of N units is divided into subpopulations of 

N1, N2,…,NL, units. The subpopulations do not overlap, and comprise the whole population, so 

that 

N1 + N2 + … + NL = N 

These subpopulations are called strata. After the strata have been determined, a sample is drawn 

from each, with drawings being made independently in different strata. Sample sizes are 

designated by n1, n2,…, nL. Random samples taken within each stratum marks the procedure as 

stratified random sampling (Cochran, 1977). 

Cochran (1977) wrote: 

 

Stratification is a common technique. There are many reasons for this; the principal ones 

are the following. 

 

1. If data of known precision are wanted for certain subdivisions of the population, it is 

advisable to treat each subdivision as a “population” in its own right. 

2. Administrative convenience may dictate the use of stratification; for example, the 

agency conducting the survey may have field offices, each of which can supervise the 

survey for a part of the population. 

3. Sampling problems may differ markedly in different parts of the population. With 

human populations, people living in institutions (e.g., hotels, hospitals, prisons) are often 

placed in a different stratum from people living in ordinary homes because a different 

approach to the sampling is appropriate for the two situations. In sampling businesses we 

may possess a list of the large firms, which are placed in a separate stratum. Some type of 

area sampling may have to be used for the smaller firms. 

4. Stratification may produce a gain in precision in the estimates of characteristics of the 

whole population. It may [be] possible to divide a heterogeneous population into 

subpopulations, each of which is internally homogeneous. This is suggested by the name 

strata, with its implication of a division into layers. If each stratum is homogeneous, in 

that the measurements vary little from one unit to another, a precise estimate of any 
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stratum mean can be obtained from a small sample in that stratum. These estimates can 

then be combined into a precise estimate for the whole population. (89–90) 

 

 

Knowledge of sample characteristics in each stratum is essential into dividing the sample 

population into homogeneous subpopulations. The main purpose of stratified random sampling is 

to increase the precision of the estimates made by sampling, which is accomplished when units 

within each subpopulation are more homogenous than the total population (USEPA, 1983). 

The major limitation of stratified random sampling is that reliable prior knowledge of the 

population is necessary to effectively define the strata and allocate the sample sizes. Any gains in 

precision or reductions in cost depend on the quality of the information used to set up the 

stratified sampling design. Often times, samplers go into a site without adequate information to 

implement this design. In addition, an investigator may encounter difficulties gaining access to 

sampled locations placed randomly in the field (USEPA, 2002). 

 

3.   Systematic sampling 

In systematic sampling, N units of the population are numbered 1 to N. To select 

a sample of n units, a unit is taken at random from the first k units and then every kth unit after.  

The selection of the first unit determines the whole sample, and is known as an every kth 

systematic sample. In effect this creates n strata, which consists of the first k units, the second k 

units, and so forth. The difference between this and typical stratified random sampling is that 

with the systematic sample the units occur within the same position in the stratum, while in 

stratified random sampling the position of the unit is determined separately by randomization 

within each stratum. The systematic sample is spread more evenly over the population and this 

can make systematic sampling more precise than stratified random sampling (Cochran, 1977). 
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Spatially, systematic sampling is applied in a grid pattern, with the grid randomly placed 

at a starting location. If the sampling objective is to estimate spatial patterns or trends in the 

target population using geostatistical methods, then this design is optimal. It is also useful in 

estimating statistical parameters of the target population, such as the mean and the variance, 

when the systematic pattern of locations does not coincide with a spatial pattern of contamination 

that could cause a bias in estimating those parameters (Gilbert, 2005). 

This particular technique has an advantage over random sampling in that it is often easier 

to execute without mistakes, especially if the units are chosen at or near the center of the strata 

(Cochran, 1977). Holmes (1970) notes that there is a viewpoint among statisticians that 

randomization is an inferior approach in plane sampling. He goes on to say that the systematic 

sample will be more precise provided care is taken in selecting the appropriate sampling interval.  

For plane sampling, the loss of information inherent in randomization is wasteful and 

unnecessary. The USEPA (2002) states that the benefits of systematic sampling include multiple 

options for implementing a grid design, which can be useful for multiphase sampling. Regularly 

spaced samples allow for spatial correlations to be calculated if the pattern of interest is larger 

than the spacing of the sampled nodes. In addition, grid designs can be implemented when little 

or no prior information exists about a site, and are often used for pilot studies and exploratory 

studies if the assumption is that there are no patterns or regularities in the distribution of the 

contaminant of interest. 

However, systematic sampling may not be as efficient as historical records if prior 

information is available about the population. Background knowledge from exploratory or pilot 

studies can be used as a basis for stratification or identifying areas of higher likelihood of finding 

properties of interest, such as hotspots. In addition, if the properties of interest are aligned with 



 

13 

 

the grid, there is a possibility that systematic sampling may overestimate or underestimate a 

characteristic of the population (USEPA, 2002). Milne (1959) explains: 

Both Finney [1947, 1948, 1950] and Yates [1953] have pointed out the danger to 

systematic sampling arising from unsuspected: (a) periodic variation, (b) consistent 

increase, in unit value along the direction of the sampling lines; and (c) “marked strip 

effects running in straight lines across the material in such a manner that the whole of one 

line of sample points falls on the same strip.” [Yates, 1953, 286] 

 

 

Marked strip effects are relatively rare in nature, but can be imposed by drastic human activit ies, 

such as draining and cultivating. Likewise, periodic variation rarely occurs naturally, but could 

be caused by anthropogenic sources. 

 

B.   Geostatistical Methodology 

Most classical statistical methods do not make use of the spatial information in earth 

science data sets. Geostatistics offers a set of tools to analyze the spatial continuity that is an 

essential feature of many natural and anthropogenic phenomena, and provides adaptations of 

classical regression techniques to take advantage of this continuity (Isaaks & Srivastava, 1989). 

Some believe that a geostatistical methodology can cut down on sampling costs and time.  

A Department of Energy estimate indicates that the department will spend between $15 and $45 

billion dollars for analytical services alone over the next 30 years to support environmental 

restoration activities at its facilities (Johnson, 1996). Johnson (1996) proposes an adaptive 

sampling framework that relies on a coupled Bayesian/geostatistical methodology as the 

potential for substantial savings in the time and cost associated with characterizing the extent of 

contamination. Bayesian analysis allows the quantitative integration of “soft” information—such 

as historical information, non-intrusive geophysical survey data, preliminary transport modeling 

results, and past experience with similar sites—with hard data. Geostatistical analysis provides a 



 

14 

 

means for interpolating results from locations where hard data exists to areas where it does not 

using methods such as indicator kriging.
1
 Johnson notes that the challenge for adaptive sampling 

programs is providing real-time sampling program support that incorporates the  

significant amount of soft information available and accounts for the spatial autocorrelation that 

is typically present. 

McBratney, Webster, and Burgess (1981) describe a study in which the design of an 

optimal sampling scheme is based on the theory of regionalized variables,
2
 and assumes that 

spatial dependence is expressed quantitatively in the form of the semi-variogram.
3
 It also 

assumes that the maximum standard error of a kriged estimate is a reasonable measure of sample 

spacing. If variation is isotropic
4
 a regular triangular or rectangular grid is used, and the 

maximum standard error is kept to a minimum for any given sampling. If the variation is 

geometrically anisotropic
5
 grid spacing is greatest in the direction of major correlation, and 

smallest in the direction of minor correlation. 

 

 

 

______________________________________________________________________________ 
1 

Kriging is a method that produces a distribution of possible estimates for each unsampled point. The estimations are a function of 

the surrounding neighbors (SADA Documentation, 2008, Ch. 28) 

 
2 

Regionalized variable theory is a set of statistical principles that mathematically considers spatial function properties but that neglects the 

physical nature of the phenomenon under study. Regionalized variable theory uses random variables to model spatial functions (Olea, 1984). 

 
3 

The semi-variogram method returns a measure of variance for any given distance of separation and essentially calculates the  

degree to which data are more or less “alike” for any given distance. This measure is defined as half of the average squared  

difference between values separated by distance h. The term h is the lag distance. The equation is:  

 

 
where N(h) is the number of pairs separated by distance h, xi is the starting sample point (tail), and yi is the ending sample point (head)  

(SADA Documentation, 2008, Ch. 30). 
 

4 Isotropy refers to the spatial phenomenon where data do not tend to be more alike in any one direction than any other  

(SADA Documentation, 2008, Ch. 28). 

 
5 

Anisotropy refers to the spatial phenomenon where data tend to be more alike in a particular direction than another 

(SADA Documentation, 2008, Ch. 29). 
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Their methodology can be summed up as follows, (D) being decisions, (C) being 

computations, and (F) being field-work: 

 

D1 Choose the maximum error allowed Kmax  and block size. 

D2 Decide the level of presurvey information required. 

  (a) If the semi-variogram is known or can be inferred, then go to C3. 

  (b) If the scale of variation is known or can be inferred, then go to D3. 

(c) Else, nothing is known or can be inferred about the variable in the region of 

interest and the scale of variation first should be obtained using F1 and C1. 

F1 Obtain the scale of variation used a nested design (Youden and Mehlich, 1937). 

C1 Calculate nondirectional semi-variograms for nested design (Miesch, 1975). 

D3 Choose transect sample interval from nondirectional semi-variogram and preset -
2Kmax  remembering that this sample interval should be considerably less than the final 

grid spacing to obtain a useful experiment semi-variogram. 

F2 Sample transects in 3 or more directions with randomly-located starting points. 

C2 Calculate experimental semi-variograms and fit a model. 

C3 Obtain grid spacing a for direction of maximum variation  using the method 

described previously for both triangular and square grids. The grid spacing in direction  

+ /2 is ra, where r is the anisotropy ration. If the semi-variogram is isotropic, the grid 

can be oriented in any direction and the grid spacing are equal in both directions. 

D4 Choose to sample on a triangular or square grid. Only in exceptional circumstances 

will the efficiency advantage of the triangular grid out-weight the inconveniences of extra 

travelling, site location and computer handling.  

F3 Sample on grid in direction  rad with spacing a and  + /2 rad with spacing ra 

(McBratney et al., 1981, 334). 

 

 

Olea (1984) presents a procedure to minimize the sampling requirements necessary to 

estimate a mappable spatial function at a specified level of accuracy. The technique is based on 

universal kriging, an estimation method within the theory of regionalized variables. The average 

standard error and maximum standard error of estimation over the sampling domain are used as 

global indices of sampling efficiency. These measures depend on several unmanageable factors, 

such as the semivariance and the drift, and several manageable factors, such as the size of the 

sample subset of nearest neighbors considered by the estimate, the sample pattern, and the 

sample density. The procedure optimally selects those parameters controlling the magnitude of 
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the indices, including the density and spatial pattern of the sample elements and the number of 

nearest sample elements used in the estimation.   

Olea states: 

 

Most spatial functions of a geologic nature can be known only partially through scattered 

sets of expensively gathered measurements. Observations of a spatial function constitute 

a statistical sample. However, because spatial functions possess continuity and each 

location is unique, classical statistical theory and sampling procedures are not applicable.  

Rather, we must turn to a special statistical theory which explicitly considers spatial 

properties, the theory of regionalized variables. (369–370) 

 

 

Regionalized variable theory and the kriging methodology have a closer connection with 

classical statistics than classical sampling theory (the design-based approach), in that both are 

based on similar stochastic models (Brus & de Gruijter, 1997). 

The global indices depend upon three factors under control of the experimenter: the 

number of nearest neighbors used in the estimation procedure, the spatial pattern of the sample 

points, and the density of the points across the mapped area. The indices decrease slowly and 

monotonically by increasing the density of sample elements. The index level must be selected 

according to the cost of data gathering, the further uses of collected information, and the amount 

of uncertainty that is acceptable in the study (Olea, 1984). 

Oliver and Webster (1986) continue the study of regionalized variables in the context of 

nested sampling. Pollutants vary continuously and randomly in space, but the pattern and scale of 

the variation is not readily apparent. They postulate that the semi-variogram of regionalized 

variable theory provides a precise solution to identify the scale and pattern of variation of 

continuous spatial variables once the approximate scale of spatial variation is known. 

The semi-variogram is a key tool of modern geostatistics. It can provide a concise and 

unbiased description of the scale and pattern of spatial variation. The semi-variogram can be 
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estimated from the sample values, and once a suitable mathematical model has been fitted to the 

values of the experimental semi-variogram, its parameters can be used for local estimation by 

kriging, and for optimizing sampling. It is estimated at regular intervals of spatial lag, preferably 

from a regular systematic sample; however, this procedure limits the range of spatial variation 

that the semi-variogram can reveal. Unless investigators already roughly know the spatial scale 

of the major source of variation they may sample either too sparsely to identify it if the range is 

short or unnecessarily intensively if only long-range variation is present (Oliver & Webster, 

1986). 

Barnes (1988) presents a study to minimize the kriging variance for secondary sample 

designs
6
 during geologic site characterization. He offers alternatives to the use of global  

kriging variance
7
 as a heuristic criterion in sample network design. These alternatives minimize 

the average local kriging variance
8
 and the maximum local kriging variance.

9
 

The objective of initial sample design is to collect enough information to assemble an 

original model for the site under investigation. After building the model the sampling objective 

changes to minimizing the chance of surprises, or, essentially, to minimize the probability of the 

existence of unknown features which would trigger a radical modification to the current model.   

______________________________________________________________________________ 
6 

Secondary sample designs are applied after some data and other information has been obtained. The objective is to refine the model or the 

decision in a specific way. Secondary sampling designs can be either point (sample) or model (geospatial model) based  

(SADA Documentation, 2008, Ch. 37). 

 
7 The global kriging variance is the estimation variance that results from using the available samples to estimate the average of the entire area of 

interest (Barnes, 1988, 811). 
 

8 
The average local kriging variance is most easily explained by partitioning an area of interest into “L” pieces. Use the available samples to 

estimate the average value of each individual piece. Associated with each of these L estimates is a kriging variance. Sum all of these L kriging 

variances and divide by L. The average local kriging variance is then defined as the limit of this arithmetic average of kriging variances as the 

area of interest is divided into more and more pieces: the average point kriging variance over the area of interest (Barnes, 1988, 812). 

 
9 The maximum local kriging variance process begins as stated above for the average local kriging variance, however, after averaging the value 

of each individual piece determine the maximum of the L associated kriging variances. The maximum local kriging variance is then defined as 

the limit of this maximum of kriging variances as the area of interest is divided into more and more pieces: the maximum point kriging variance 

over the area of interest (Barnes, 1988, 812–13). 
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Barnes claims that the maximum local kriging variance criterion is more appropriate than 

the global kriging variance when the issues at hand are concerned with discovering unidentified 

extremes across the area of interest that often occurs when investigating a potentially 

contaminated site. If the objective of the sampling program is to determine extremes, additional 

samples should be placed in zones with high estimation uncertainty and that have a reasonable 

probability of being an extreme value (Barnes, 1988). 

Englund and Heravi (1993) acknowledge the work of Barnes (1989) and other 

applications that involve variations on the minimization of the kriging variance to determine 

ideal sampling patterns, to identify the best locations for one or more proposed additional 

samples, or to find the minimum number of samples needed to attain a specified maximum level 

of error. They state that this approach does not incorporate economics, nor does it readily permit 

evaluation of the consequences of decision-making with uncertainty. The sample design 

procedure they propose is a Monte Carlo resampling scheme which simulates the remediation 

operation, including data collection, interpolation, and selection. 

Englund and Heravi (1994) continue their investigation into ways of improving the cost-

effectiveness of site characterization and remediation by examining the relative effectiveness of 

three alternate approaches to sampling contaminated soils to determine whether remediation is 

needed. They conducted experiments in phased sampling, with one-phase, two-phase, and N-

phase design algorithms used on surrogate models of sites with contaminated soils. 

To elaborate on phased sampling: 

 

A sampling phase, as used here, involves an interruption of the sampling process until the 

data from all prior sampling is available for interpretation. In one-phase designs, the 

results of the chemical analyses will only become available after sampling has been 

completed. In two-phase sampling, preliminary estimates of contaminant concentrations 

based on data from the first phase will be used to determine locations where additional 
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data are needed most. The N-phase approach takes phased sampling to its extreme—

every sample is a discrete phase. Estimates will be updated after each sample 

measurement and used to determine the most critical location for the next sample. In 

practice, this would require a fast, field-portable measurement system (Englund & 

Heravi, 1994, 248). 

 

 

They conclude that optimal two-phase designs are better than one-phase designs, and N-

phase designs are better yet. Short of advocating N-phase designs for every sampling program, it 

is noted that in practice this is not realistic. The improvements in cost are relatively small, and 

must be balanced with increased costs, such as logistical costs associated with the delay between 

phases—i.e., remobilization costs. If the measurements involve laboratory analysis, costs will be 

prohibitively high. Ultimately, the optimal, cost-effective design comes from a two-phase model, 

with the optimum total number of samples determined from the one-phase algorithm, and 75%  

of those samples assigned to the first phase (Englund & Heravi, 1994). 

Kravchenko and Bullock (1999) conducted a study to evaluate three interpolation 

techniques in order to find the optimal method for mapping soil properties. They evaluated 

inverse distance weighting, ordinary kriging, and lognormal ordinary kriging. They concluded 

that lognormal ordinary kriging can be expected to produce better estimations for lognormally 

distributed data than ordinary kriging. However, for some data sets lognormal ordinary kriging 

can result in biased estimations, with relatively high negative mean error between measured data 

and estimates. They note that ordinary kriging seems to be a safer choice than lognormal 

ordinary kriging for data sets with more than 200 data points. Kriging with the optimal number 

of neighboring points, a carefully selected variogram model, and appropriate transformation of 

data produces more accurate estimations than the inverse distance weighting method. 

Investigation of the progress of the kriging algorithm suggests that initial gains are made 

by moving apart points that are too close together, moving some points into regions where the 
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initial random design is sparse, and making some adjustments for boundaries. The algorithm 

usually makes substantial improvement over the initial design with the first few iterations, but 

quickly reaches a broad valley in the search space and subsequently takes an extremely long time 

to converge to the optimal design (Cox et al., 1995). 

 

C.   Classical Site Sampling Theory versus Geostatistical Methodology 

Many environmental contaminants originate from a point source, and rather than forming 

a uniformly distributed pattern, their concentrations are often very high near the source, but fall 

off rapidly as the distance from the source increases. It would make sense, then, to sample more 

intensively in those highly concentrated regions. However, it is not easy to do so and obtain an 

unbiased estimate of the total. Even kriging does not necessarily give an unbiased estimate from 

a preferential sample (McArthur, 1987). 

Brus (2010) outlines the differences between sampling approaches: 

 

In a design-based approach sampling locations are selected by probability sampling, and 

the statistical inference (e.g., estimation of spatial mean) is based on the sampling design.  

In a model-based approach there are no requirements on the method for selecting 

sampling locations, and typically are selected by purposive (targeted) sampling, for 

instance on a centered grid. In statistical inference a model for the spatial variation is 

introduced, e.g., an ordinary kriging model, assuming a constant (unknown) mean, or a 

universal kriging model in which the mean is modelled as a linear function of one or 

more predictors. Besides the deterministic part for the mean, a kriging model contains a 

stochastic part describing the variance and covariance of the residuals of the mean. Note 

that the source of randomness is different in the two approaches. In the design-based 

approach the selection of the sampling locations is random, whereas in the model-based 

approach randomness is introduced via the model of spatial variation. In the design-based 

approach no such model is used. This has important consequences for the interpretation 

of measures of uncertainty about estimates, e.g., the variance of the estimation 

(prediction) error. (32) 
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McArthur (1987) uses simulated data to evaluate several methods for sampling an area 

and estimating the total amount of a pollutant known to be concentrated in one area of a region.  

He concludes that stratified random sampling and importance sampling
10

 emerge as the best 

methods for estimating the mean level of a contaminant that is known to be locally concentrated 

around a source. Both methods give unbiased and reasonably precise estimates of the mean and 

its sampling variance, while the other sample designs either give biased or imprecise estimates.  

Often, however, we are seeking extreme values that surpass a specified threshold. His methods 

might best be suited to the initial site or hot spot characterization and not to an environmental 

risk assessment or human health evaluation. 

De Gruijter and ter Braak (1990) compare the design-based approach (classical) with the 

 

model-based approach (geostatistical): 

 

In the model-based approach, locations need not be selected at random. They typically aren’t.  

The only source of stochasticity is then the postulated underlying process. In this approach 

inference is therefore primarily based on the model formulated. The nature of the 

stochasticity involved in the model-based approach is thus fundamentally different from that 

in the design-based approach where, as we have seen, it originates from a physical sampling 

process. The latter is in our hands. The design-based approach thus requires fewer 

assumptions than the model-based approach. It is therefore advantageous with respect to 

robustness to use the design-based approach whenever possible. (408) 

 

 

They insist that a design-based approach is inapplicable if probability sampling is impracticable, 

and a model-based approach is inapplicable if reliable identification of a model is prevented by 

lack of data. However, geostatistical models may form a natural basis for inference in situations 

where part of the region is inaccessible, or measuring has been censored or impaired. If data are  

 

______________________________________________________________________________ 
10 

Importance sampling uses a Monte Carlo method for computing a multiple integral to formulate a probability density function 

(McArthur, 1987, 745–46). 
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available from the vicinity of the region these can be used via the model-based approach, as in 

kriging. 

De Gruijter and ter Braak (1992) go on to refute Barnes’ (1988) publication on the 

sample design for geologic site characterization: 

 

This strategy is inferior to the basic design-based strategy of Simple Random Sampling 

combined with Eq. (1) for the following reasons. 

1.  Barnes’ strategy would normally require a considerably larger sample size for the 

same coverage probability. Under Simple Random Sampling not more than log (1 – 

P) / log() samples are needed (Eq. 2), where P denotes the required probability of 

coverage. This is the lower bound of the number required by Barnes’ strategy. 

2.  Barnes’ strategy is approximative only and liable to impairment by model errors, 

whereas Simple Random Sampling with Eq. (1) is exact and independent of any 

model. 

3.  Barnes’ strategy is much more complicated. (863) 

 

Brus and de Gruijter (1997), in a comparison of design-based and model-based sampling 

strategies, came to the conclusion that both the model-based approach and design-based 

approach are valid for spatial sampling and estimation. Many studies have declared that 

independence in the design-based approach is not met due to spatial autocorrelation,
11

 however,  

Brus and de Gruijter insist that independence is not assumed but created by the sampling design.  

The model-based approach is not necessarily optimal if only one realization is considered. The 

authors outline an approach to choosing between the two methods given certain factors using a 

decision-tree. 

______________________________________________________________________________ 
11 

The idea of autocorrelation, which implies that variables are spatially dependent (i.e., variables closer together have more in common than 

those farther apart), is central to the theory of geostatistics (McBratney et al., 1981). 
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D.   Hybrid Designs 

Pettitt and McBratney (1991) consider sampling designs and estimation procedures for 

the spatial variogram (the semi-variogram) when no information on magnitude or scale of  

variation is available. Conventionally, two approaches to designing an exploratory (or any other) 

spatial survey are available: a purely design-based approach with some kind of random design or 

a model-based approach based on some systematic design. The former may be difficult to 

implement in the field and the latter runs the risk of “superpopulation”
12

 model misspecification. 

They propose a hybrid approach to the problem: 

 

There are advantages and disadvantages with the design-based variance components and 

the model-based geostatistical approaches. We have devised a statistically and practically 

efficient novel scheme which is a hybrid between the two standard approaches. This 

consists of linear transects with exponentially spaced sampling locations uniformly 

oriented in three directions (Pettitt & McBratney, 1991, 205–206). 

 

 

They acknowledge that the variance components model implies a non-decreasing variogram 

which in some circumstances may be an unrealistic assumption. They did not explore this 

possibility further. 

Cox et al. (1995) state: 

 

Sources and effects of bias in environmental sampling need to be identified and studied.  

Techniques for examining correlation structure to determine the effective sample size of a 

design are needed. The issues surrounding combining design-based (e.g., regular designs) 

and model-based (e.g., conditional simulation) approaches in spatial design and analysis 

need to be stated and examined. For example, can soil pollution concentrate data 

collected on different designs be combined across all or a sample of the hazardous waste 

sites in a region to provide meaningful regional pollution characterization and 

remediation cost information? (24) 

 
___________________________________________________________________________________ 
12 

A superpopulation is a hypothetical infinite population from which the finite population is a sample and is integral to the model-based 

approach and geostatistical theory (De Gruijter & ter Braak, 1990). 
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Brus and de Gruijter (1997) point out that there are no examples in soil science applying 

the model-assisted approach, which utilizes design-based sampling strategies that make use of a 

model. The role of a model in design-based inference differs from that in the model-based  

approach as the latter describes a process by which the data have been generated, whereas in the 

former it describes the population itself. 

 

E.   Conclusions 

As outlined above there are many theories and methods to address sample design. Other 

than random sampling, there does not seem to be an agreed upon methodology. Random 

sampling lends statistical validity to the sampling design, and may be cost effective; however it 

is not highly useful when needed to detect hotspots or plumes of contamination created by 

geospatial variables, and does not provide a complete picture of the spatial distribution of 

contamination without addressing secondary sampling methods. Most secondary sampling 

designs built on top of random samples, such as adaptive sampling, however, fail to take into 

account the prohibitive costs of sampling in a real world situation. Grid designs like systematic 

sampling are effectively implemented when little or no information exists for the site, but may 

overestimate or underestimate a characteristic of the population if the grid is aligned with 

properties of interest. These designs also do not consider the spatial information in earth science 

data sets. Geostatistical methods incorporate the idea of spatial autocorrelation, that variables 

closer in proximity are more alike than those farther away, and kriging is effective for 

interpolating from areas where data exist to areas where they do not, however the models may be 

biased due to lack of information and may not be optimal if only one realization is considered.  
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The underlying correlation model that is based on the semi-variogram operates under many 

assumptions and errors can vastly affect the outcome of the model. 
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III. PROBLEM STATEMENT 

 

The issue is that given a particular site and/or data set, it is not clear which LISA 

secondary sampling design should be used to provide the most rational outcome—that of optimal 

sample placement to characterize the spatial distribution of the contaminants or the identification 

of hot spots. Each of these secondary sampling designs are based on a set of general parameters 

that the user inputs. These manual inputs often generate a wide variety of outcomes. While they 

allow SADA to be a versatile tool that can adapt to what the user wants to accomplish, they also 

create a wide margin of error and uncertainty when misused or poorly understood. Furthermore, 

the LISA methods (Ripley’s K, Moran’s I, and Geary’s C) give a sense of spatial sampling 

density and spatial variability by specifying a search window around individual observations that 

assesses the amount of neighbors or the local variance/correlation of the data points found there.  

They can be potent tools when used correctly, however, the manual user input required for the 

search radius once again opens up these algorithms to a large amount of uncertainty when used 

to develop a secondary sampling design.   

The objective of this study was to demonstrate the use of SADA to identify secondary 

sampling locations by taking into account data from a previously sampled site. In addition, I 

wanted to assess the limitations of the existing LISA parameters in SADA, and to identify 

guidelines that allow SADA users to utilize the secondary sample designs, in particular the LISA 

designs, effectively.  Lastly, I wanted to assess the applicability of the LISA methods and to 

identify and potentially optimize the critical parameters to gain a cost effective, practical, 

reliable, and defensible method of characterizing the spatial distribution of contaminants. 
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IV. SITE SELECTION 

 

A.  Site Background 

The data set used was sample data from an actual USEPA Superfund site located in the 

Midwest where a zinc smelter operated. The identity and location of the Superfund site needs to 

remain confidential, and certain landmarks have been removed from any images of the site to 

conceal the identity of the study area. The site is in close proximity to neighborhoods and 

contains elevated levels of arsenic and lead contamination due to the smelter operations. The 

amount of samples initially placed were 50, and each sample point contains a median arsenic and 

a median lead concentration in parts per million (ppm). Historically, the samples were collected 

by USEPA. Site-specific observations were recorded in a Microsoft Excel (Excel) spreadsheet 

with the following attributes: x, y coordinates, decimal degrees, global positioning system (GPS) 

identification, date of sampling, median lead concentration in ppm, and median arsenic 

concentration in ppm.   

The data from the spreadsheet were imported in to ArcGIS, a geographical information 

systems software. The x, y coordinates of each sample was plotted with this software to obtain a 

spatial representation of the Superfund site samples. An aerial image was added to visualize the 

site. A boundary was drawn around the area the USEPA targeted for sampling. Figure 1 shows 

the area, which appears to be a residential zone and will be referred to as Parcel 1.   
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Figure 1. Sample placement and visualization of the Superfund site. 

 

 

The data set was selected for this study for the following reasons: 

 The site fulfills the criteria of a contaminated site. 

 The site had historical investigation data that could be used as a base for secondary 

sampling methods. 

 The sample size was small, reflecting the realities of a sampling program. 

 The initial sample design was nearly systematic in nature, providing a crude estimate 

of the spatial distribution of contaminants. 
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B.  Site Characterization 

The 50 samples in Parcel 1 are arrayed in a grid-like pattern and appear to have been an 

unaligned systematic sample or a stratified random sample, potentially including judgment 

sampling or phased sampling around samples of concern (i.e., higher contaminant values). The 

phased sampling theory is also reinforced by the fact that some coordinates are sampled twice, 

indicating a desire for more information. In SADA, these locations are symbolized by a dotted 

circle around the stacked samples. Figures 2 and 3 below show the scale of contamination for 

both arsenic and lead.  

Table I shows the descriptive statistics for arsenic and lead in Parcel 1. Figures 4 and 5 show 

the histograms for arsenic and lead, respectively. As the histograms show, the data is skewed; 

however, normal properties were calculated. 

 

 

 

Figure 2. Arsenic values for Parcel 1 in ppm. 

 

Total non-

carcinogenic RSL:  

22 ppm 
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Figure 3. Lead values for Parcel 1 in ppm. 

 

 

 

 

 

 

TABLE I 

 

STATISTICAL ANALYSIS FOR ARSENIC AND LEAD FOR PARCEL 1 

 

PARCEL 1   

 Arsenic (ppm) Lead (ppm) 

Count 50 50 

Arithmetic 
Mean 11.44 89.25 

Median 10 52 

Min 7 22 

Max 31 499 

Range 24 477 

Variance 17.0294 7958.0128 

Standard 
Deviation 4.1264 89.2077 

Standard Error 0.5836 12.6159 

Residential Soil SL:  

400 ppm 
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Figure 4. Arsenic histogram. 
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Figure 5. Lead histogram. 
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V. SPATIAL ANALYSIS AND DECISION ASSISTANCE  

 

A.   Background 

Spatial Analysis and Decision Assistance began as an effort in 1996 between the 

University of Tennessee and the Oak Ridge National Laboratory’s Environmental Restoration 

program. The purpose of this collaboration was to develop tools that would integrate human 

health and ecological risk assessment with geospatial processes in a way that could directly 

impact environmental restoration decisions. In the late 1990s and early 2000s the USEPA 

continued to support SADA, followed shortly thereafter by the USNRC. Through its 

development stages the authors have sought to maintain the original principles of the project: 

everyday applicability and ease of use (SADA, 2008). 

Here is a broad list of SADA’s capabilities: 

 Data Explorationa and Visualization 

 Geographic Information Systems 

 Statistical Analysis 

 Human Health Risk Assessment 

 Ecological Risk Assessment 

 Data Screening and Decision Criteria 

 Geospatial Interpolation 

 Uncertainty Analysis 

 Decision Analysis 

 Sample Design 

 Multi-Agency Radiation Survey and Site Investigation Manual module



 

33 

This study will focus on the three LISA methods of secondary sampling designs that SADA has 

to offer. 

 

 

B.   Secondary Sampling Designs 

 

Secondary sampling designs are applied after some background information or data have 

already been obtained. The general objective is to further refine the model or the decision in 

some very specific way. Secondary sampling designs are broken into two categories: point 

(sample) or model (geospatial) based (SADA, 2008). The geospatial designs can either be based 

on an interpolant, such as ordinary kriging, or on a LISA algorithm that is based on a search 

window that also factors neighboring points into the equation. 

A LISA is any statistic that satisfies the following requirements: 

 the LISA for each observation gives an indication of the extent of significant spatial 

clustering of similar values around that observation, otherwise known as hot spots; 

 the sum of LISAs for all observations is proportional (or equal) to a global indicator 

of spatial association. 

A LISA can be expressed for a variable yi, observed at location i, as a statistic Li, such that:  

Li = f(yi, yj), 

where f is a function (possibly including additional parameters), and the yj are the values 

observed in the neighborhood Ji of i (Anselin, 1994). 

  

1.   Ripley’s K design 

The Ripley’s K design locates samples in areas with the lowest sampling density. 

The Ripley’s K statistic is a measure of neighborhood sampling density, and the value is 
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evaluated at nodes in the grid by specifying a simple search neighborhood about the nodes 

assessing the number of data points found there. In principle, it is similar to the Adaptive Fill 

design; the number of new samples is chosen by the user. But rather than locate the sample based 

on the furthest distance from the closest neighbor, the location is based on the node with the 

lowest sampling density in the nearby vicinity. Ripley’s K requires the use of a minimum 

distance constraint to counteract the likelihood that nodes of low sampling density will be 

clustered together (SADA, 2008).   

In addition, a LISA search radius must be specified. The LISA methods, which include 

Ripley’s K, Moran’s I, and Geary’s C, are a set of functions that give some sense of spatial 

sampling density and spatial variability. For Ripley’s K, a window of size h is centered about 

each sample point and the number of sample points found within the window is computed. The 

window is then moved to every other sample point and the number is recomputed. The values are 

averaged producing an average value for the distance window h. The estimator for K(h) is:  

 

Where λ= N/|A|, N is the number of samples, A is the area of the site, and wij is a spatial weight 

used to account for edge effects near the boundary. The SADA produces a moving window of 

sample counts over an extent of grid nodes. For a specific distance of h, SADA creates a 

continuous map of count data using a defined base grid. For each grid node, the number of points 

is computed within a distance h. This provides a sense of the spatial distribution of clusters for a 

given distance h (SADA, 2008).   
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2.   Moran’s I design 

The Moran’s I design is another LISA method that seeks to place new sample 

points in areas of high local sample variance. The idea is to collect more data in locations where 

greater uncertainty or variability exists (SADA, 2008). As in the Ripley’s K design, a moving 

window of radius d is positioned at sample points around the site and the weighted variance of 

sample points within the window is computed. The estimator for I(d) is:  

 

where N is the number of spatial units indexed by i and j; X is the variable of interest;  is the 

mean of X; and wij is a spatial weight used to account for edge effects near the boundary (SADA, 

2008).  

  

3.   Geary’s C Design 

The Geary’s C Design is the final LISA method and seeks to place new sample 

points in areas with greater negative correlation among samples found in the search 

neighborhood. The idea is to collect more data in locations where greater uncertainty or 

variability exists. This design differs from Moran’s I in that uncertainty is measured not by local 

variance but by local correlation. The more negative the correlation among data within the 

neighborhood, the more they are unalike (SADA, 2008). In Geary’s C, semivariance is computed 

as follows:  
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where N is the number of spatial units indexed by i and j; X is the variable of interest;  is the 

mean of X; wij is a spatial weight used to account for edge effects near the boundary; and W is 

the sum of all wij  (SADA, 2008). 

 

C.   General Spatial Analysis And Decision Assistance Parameters 

Some sampling parameters are offered by SADA that are generally used across all 

secondary sampling designs. Many require manual inputs which provide SADA with much 

versatility when creating secondary sampling designs. 

 

1.   Number of samples 

  There are three options for choosing the number of samples to place: 

 You Pick—a blank field allows the user to manually input the amount of 

samples they would like to be placed. 

 Based on Sign Test—a non-parametric method based on the median value of 

the site. 

 Wilcoxon Rank Sum Test—another non-parametric method, but with the 

difference that the Wilcoxon Rank Sum Test tests against another distribution 

instead of a single decision criteria. 

 

2.   Minimum distance constraint 

  Utilizing SADA, the user can input a minimum distance constraint in all of its 

secondary sampling designs. By specifying a minimum distance constraint, the user can create 
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“no sample zones” around existing samples and potential new sample locations (SADA, 2008). 

In some sampling designs samples may inherently cluster together in order to meet an 

optimization criteria. In many cases, however, the user may want to spread new samples 

throughout a particular region to provide good spatial coverage.   

 

3.   Tie break options 

  When multiple new sample locations fulfill the goal of a secondary sampling 

design a decision must be made so that only one of the new sample locations is chosen. Three 

types of tie break methods are provided by SADA (SADA, 2008): 

 Random—a random number generator is used to select one of the sample 

locations.  A seed is used to feed the random number generator. Using a seed 

allows the user to recreate a sample design by entering the same value. 

 Maximize spatial coverage—the value that will maximize the spatial coverage 

of the site is chosen as a new sample. 

 Closest to center of the site—the value that is closest to the center of the site is 

chosen as a new sample. 

The random seed is an optional parameter. If kept blank and ties occur, then the tie breaker is 

decided each time the design is reapplied. 

 

  4.   Grid specifications 

  Spatial Analysis and Decision Assistance allows the user to choose grid 

specifications based on number of cells in the Easting and Northing directions. The 

corresponding spacing between the nodes of these cells is also shown. The blocks formed by this 
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grid become the basis for the secondary sampling designs. Their purpose is two-fold: for 

geospatial based designs concentration values are modeled at each block across the site, and the 

nodes formed by the blocks provide sample locations.   
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VI. IDENTIFYING GUIDELINES FOR GENERAL PARAMETERS 

 

A.   Number of Samples 

While it is useful to utilize the non-parametric methods offered by SADA to control Type 

I or Type II errors, the goal of this study is to achieve a methodology for selecting secondary 

sampling designs based on a more common occurrence. From a practical standpoint, sampling 

budgets will often dictate the number of samples that can be afforded. Typically, this is a smaller 

number than may be desired. Given the initial sample design and taking into account budget 

constraints that may be faced in the field, it was decided that 10 samples would be placed when 

exploring the secondary sampling designs. 

 

B.   Random Tie Breaker 

Out of the three options available—random, maximize spatial coverage, and closest to 

center of the site—it would appear that the random option offers the least amount of impact 

while exploring other, more crucial variables. This is also SADA’s default option. Unless there is 

a reason for the user to maximize the spatial coverage of the site or to sample closer to the center 

of the site, the random tie breaker offers the least amount of bias. The random seed will be left 

blank by default. 

 

C.   Grid Resolution 

Default grid specifications will be calculated by SADA in order to get the user started 

with the secondary sampling design process. When this option was chosen for Parcel 1, SADA 

chose a grid of 50 nodes in the Easting direction and 50 nodes in the 



 

40 

 

Northing direction, as seen in Figure 6. The cell size is calculated by dividing the length of the 

site boundary in each direction by the number of cell blocks, in this case 50. The cell size in the 

Easting direction is 49.49 meters, and in the Northing direction is 38.80 meters. 

 

 

 

Figure 6. 50 x 50 grid in SADA. 

 

 

The nodes outside of the Parcel 1 borders are not eligible for sample placement and are therefore 

grayed out. Doubling the number of cell blocks in each direction to provide a 100 x 100 grid 

derives the result shown in Figure 7. 
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Figure 7. 100 x 100 grid in SADA. 

 

 

The finer resolution allows the grid to align better with the uneven lengths of the Parcel 1 

boundary. 

To see the impact upon secondary sampling design a comparison must be made keeping 

all other variables constant. Ten samples are each placed on a 50 x 50 grid and on a 100 x 100 

grid using the Moran’s I method with an arbitrarily chosen LISA search radius. Triangles denote 

new sample locations. Figure 8 shows a side by side comparison of the results. 
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Figure 8. Ten samples placed with Moran’s I algorithm using a 50 x 50 and a 100 x 100 grid. 
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For some points the difference between the two designs is slight. However, the biggest 

discrepancies revovle around the 31 ppm sample point in the bottom right corner of the site 

where there will be high local sample variance which is what the Moran’s I algorithm measures. 

In addition to this visual comparison it stands to reason that a coarser grid is not very 

optimal as there will be fewer nodes hence fewer locations to sample. Unless the user has 

pertinent information on a site that justifies the use of a coarser grid, such as representing a 

remedial unit, or an exposure unit, increasing grid density and using a finer grid makes practical 

sense. Doubling the grid specs once more derives a 200 x 200 grid. At this grid resolution it is 

difficult to see the individual cell blocks, which is apparent in Figure 9. Grid resolutions greater 

than 200 x 200 will also be difficult to distinguish from one another. 

 

 

 

Figure 9. 200 x 200 grid in SADA. 
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As shown in Figures 10 and 11, with more locations available to sample the optimality of 

the Moran’s I algorithm changes and begins to focus more on other areas of the site other than 

the bottom right corner. The finer the grid, the more samples will cluster at optimal locations.  

What then is the best grid resolution to use? With manual inputs the combinations are endless 

and the only real impediment to running designs with higher resolution grids is the amount of  

 

 

 

Figure 10. Ten samples placed with Moran’s I algorithm using a 200 x 200 grid. 
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Figure 11. Ten samples placed with Moran’s I algorithm using a 400 x 400 grid. 

 

 

time it takes to place samples. The algorithm must consider each node for each sample to find the 

optimal location. 

The question becomes, how does one practically choose grid specifications that mirror 

real world conditions? What are the constraints? Typically, sample designers use GPS devices to 

detect spatial coordinates. These GPS devices used by sample designers at USEPA can 

accurately detect spatial coordinates to within a certain distance, and in conversations with 

USEPA samplers, it was determined that the average distance GPS devices commonly used for 

sampling can accurately measure to was about +/- three (3) meters (+/- ten (10) feet). These 

devices are not high end devices which typically run in the range of thousands of dollars, but 

rather cost a few hundred dollars. To simulate this on the SADA grid, the user can input the size 
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of the cell blocks, i.e., the distance from node to node, in the Easting and Northing directions. 

The number of cell blocks in both directions would then be calculated by SADA. In the case that 

the cell size selected does not divide evenly into the site boundaries, SADA can either expand or 

contract the site boundaries so that the requested cell size works. This happens to be the case 

when a cell size of 3 x 3 meters is inputted into the grid specifications, but rather than change the 

site boundary, the user can play around with the cell block numbers and see the corresponding 

cell block size in order to achieve the right specifications. After some experimentation the grid 

specifications for Parcel 1 are set at 800 cells in the Easting direction and 650 cells in the 

Northing direction, which translates into nodes spaced out at 3.09 meters and 2.98 meters, 

respectively (see Figure 12). 

 

 

 

Figure 12. Ten samples placed with Moran’s I algorithm using a 800 x 650 grid. 
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D.   Minimum Sample Distance 

So far the minimum distance constraint has not been considered. In order to observe the 

outcomes and the feasibility of each secondary sampling design it becomes apparent that a very 

minimal sample distance restraint is required. The value chosen was three meters. This value is 

the most minimal, reliable distance that two samples can be distinguished using the common 

GPS devices mentioned in the previous section. It is worth briefly considering the impact of the 

minimum distance constraint. Figures 13, 14, and 15 show a Moran’s I design with an arbitrarily 

chosen LISA search radius placing ten samples using an 800 x 650 grid with a minimum distance 

constraint of 0, 150, and 250 meters respectively. An attempt to place samples with a minimum 

distance constraint of 300 meters yielded zero samples placed; the initial sample design was too 

dense to permit the placement of new samples in this case. In the case of a 250 meter minimum 

distance constraint only three out of ten samples could be placed. 
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Figure 13. Ten samples placed with Moran’s I algorithm at a minimum distance of 0 meters. 

 

 

Figure 14. Ten samples placed with Moran’s I algorithm at a minimum distance of 150 meters. 
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Figure 15. Three samples placed with Moran’s I algorithm at a minimum distance of 250 meters. 

 

 

The general trend is that as the minimum sample distance increases, samples diffuse into less 

densely sampled areas and towards edges and corners until the design can no longer place 

samples. 
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VII. EXPLORING THE LOCAL INDEX OF SPATIAL ASSOCIATION PARAMETER 

 

A.   Background 

A LISA is any statistic that satisfies the following requirements: 

 the LISA for each observation gives an indication of the extent of significant spatial 

clustering of similar values around that observation, otherwise known as hot spots; 

 the sum of LISAs for all observations is proportional (or equal) to a global indicator 

of spatial association. 

A LISA can be expressed for a variable yi, observed at location i, as a statistic Li, such that:  

Li = f(yi, yj), 

where f is a function (possibly including additional parameters), and the yj are the values 

observed in the neighborhood Ji of i (Anselin, 1994). 

In typical exploratory spatial data analyses, the predominant approach to assess the 

degree of spatial association is based on global statistics such as Moran’s I or Geary’s C, and it 

generally ignores local patterns of association (hot spots) and local instabilities in overall spatial 

association (Anselin, 1994). In SADA, by centering a LISA search window around each 

individual observation the weighted variance of the neighboring points within the search window 

are computed and samples are placed in areas of high local sample variance (Moran’s I) or in 

areas of local negative correlation (Geary’s C). Essentially, additional samples are placed in 

areas with the greatest sample variability in order to potentially test for local pockets, or hot 

spots. The search radius of the window determines the amount of neighbors factored into each 

individual observation and influences the placement of each additional sample. 
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For Ripley’s K, which measures the average number of points within a certain distance of 

each other, the LISA search window dictates the number of neighbors factored into each 

individual observation and therefore determines if there is any clustering. Here clustering is 

referring to the sample density; it is independent of the concentration values. In contrast, the 

Moran’s I and Geary’s C methods are concentration dependent. The Ripley’s K method then 

places additional samples in areas of lower sampling density. The radius of the search window 

will dictate how many neighbors are within a certain distance from each individual observation 

thereby affecting the program’s definition of clustering and the location of additional samples.  

 

B.   Search Radius 

The search radius (i.e., the moving search window) is another parameter that the user 

must manually input. For those with no experience with the LISA tools there seems to be no 

intuitive radius that the user should implement. Different radii tend to create vastly different 

designs for all three LISA tools. 

 

1.   Ripley’s K 

  This method is often employed in epidemiological studies to determine if there is 

any clustering in disease events. In SADA the method is used to determine if there is any 

clustering in the sample data (SADA, 2008). In different terms, the Ripley’s K method is used to 

determine where areas of low sampling density are found. The nodes in these areas may be 

candidates for new sample locations. This is an improvement over the adaptive fill secondary 

sampling design which only considers gaps defined by nearest neighbors (SADA, 2008).  
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Figures 16 through 21 depict samples placed by the Ripley’s K method at increasing LISA 

search windows. 

 

 

 

Figure 16.Ten samples placed using the Ripley’s K method and a 100 meter LISA search radius. 

 

 



 

53 

 

 
Figure 17. Ten samples placed using the Ripley’s K method and a 200 meter LISA search radius. 

 

 

 

Figure 18. Ten samples placed using the Ripley’s K method and a 300 meter LISA search radius. 
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Figure 19. Ten samples placed using the Ripley’s K method and a 400 meter LISA search radius. 

 

 

Figure 20. Ten samples placed using the Ripley’s K method and a 500 meter LISA search radius. 
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As the LISA search radius increases for the Ripley’s K method, the new sample points 

tend to be located away from the middle and other sample points. At about a 300 meter search 

radius and beyond (Figures 18 through 21), virtually all of the samples are located at the 

boundaries of the site. When sampling according to density these “edge effects” will occur 

because typically samplers will sample away from the boundaries, meaning that sampling is less 

dense on the edges of the site. 

At a 500 meter search radius (Figure 20) four new sample points are located at the top 

right corner of the site, including three that cluster in the corner at the edges. Given the shape of 

the site it would stand to reason that as the search radius becomes larger and the definition of 

clustering changes, the top right corner is going to repeatedly become the area of lowest 

sampling density. This may cause some bias in these sampling designs. Indeed, at a LISA search 

radius of 1000 meters, all but one of the sample points is located at the top right corner, as seen 

in Figure 21. 
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Figure 21. Ten samples placed using the Ripley’s K method and a 1000 meter LISA search 

radius. 

 

 

 

2.   Moran’s I 

  Moran’s I is a measure of spatial autocorrelation. Autocorrelation is the concept 

that variables are spatially dependent. It implies that variables that are clustered together have 

more in common than variables that are farther apart. Typically Moran’s I is used in exploratory 

spatial data analyses. Much like Ripley’s K, the statistic is calculated by positioning a moving 

window of radius d at data points around the site. The weighted variance of data points within 

the window are then computed. New samples are placed in areas of high sample variance 

(SADA, 2008). 
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Figure 22. Ten samples placed using the Moran’s I method and a 100 meter LISA search radius. 

 

 

 

 

 

At smaller radii, such as 100 meters (Figure 22), the new samples cluster around the 

bottom right corner. This is due to a sample point with the highest concentration of the site (31 

ppm) being surrounded by a number of samples with low concentrations. This creates an area of 

high sample variance. As the radius increases the potential samples radiate out from this location 

and also begin to be located in other areas of variability. Figures 23–25 show an increasing 

radius of 200, 300, and 400 meters, respectively. 
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Figure 23. Ten samples placed using the Moran’s I method and a 200 meter LISA search radius. 

 

 

Figure 24. Ten samples placed using the Moran’s I method and a 300 meter LISA search radius. 
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Figure 25. Ten samples placed using the Moran’s I method and a 400 meter LISA search radius. 

 

 

Figure 26. Ten samples placed using the Moran’s I method and a 500 meter LISA search radius. 
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By 500 meters (Figure 26) edge effects start to become more pronounced as more 

potential sample points are located in the bottom right corner and along the boundaries of the 

site. At a search radius of 1000 meters (Figure 27) the samples are completely confined to the 

corners and boundaries of the site. 

 

 

 

Figure 27. Ten samples placed using the Moran’s I method and a 1000 meter LISA search radius. 

 

 

3.   Geary’s C 

  Similar to Moran’s I, Geary’s C measures spatial autocorrelation. However, it 

does so in terms of correlation instead of variance. Geary’s C is also more sensitive to local 
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spatial autocorrelation while Moran’s I is more a measure of global spatial autocorrelation 

(SADA, 2008). 

 Also similar to Moran’s I, the potential samples cluster around the bottom right area at 

lower radii distances due to the variability. As the radius increases this variability  

becomes less pronounced and the samples are spread more throughout the site. Figures 28–32 

show an increasing radius of 100, 200, 300, 400, and 500 meters, respectively. 

 

 

  

Figure 28. Ten samples placed using the Geary’s C method and a 100 meter LISA search radius. 
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Figure 29. Ten samples placed using the Geary’s C method and a 200 meter LISA search radius. 

 

 

Figure 30. Ten samples placed using the Geary’s C method and a 300 meter LISA search radius. 
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Figure 31. Ten samples placed using the Geary’s C method and a 400 meter LISA search radius. 

 

 

 

Figure 32. Ten samples placed using the Geary’s C method and a 500 meter LISA search radius. 



 

64 

 

 
Figure 33. Ten samples placed using the Geary’s C method and a 1000 meter LISA search 

radius. 

 

 

Unsurprisingly, then, the samples begin to show edge effects and are placed in the 

corners and boundaries of the site. At a 1000 meter search radius (Figure 33) samples are no 

longer located in the bottom right area, but are dispersed to other corners of the site. This is not 

unexpected given the results for Ripley’s K and Moran’s I at this distance (Figures 21 and 27). 

 

C.   Conclusions 

Viewing these results it is evident that varying the LISA search radius gives equally 

variable secondary sampling designs. Unless the user has experience using LISA tools there is no 

intuitive or set distance to input. These distances and designs are not necessarily wrong, 

however, the fact that different distances create vastly different designs inherently creates a 
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problem and can easily lead to misuse. Radii that are too small might not take into account the 

full extent of spatial autocorrelation, and radii that are too large so that each potential sampling 

window starts to include most points in the site will give approximately the same variance 

calculation for all potential sites. 
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VIII. IDENTIFYING GUIDELINES FOR THE LOCAL INDEX OF SPATIAL 

ASSOCIATION PARAMETER 

 

A.   The Case For a Local Index of Spatial Association Distribution 

Speaking with professionals familiar with geostatistics and LISA, including the author of 

the LISA module in SADA, revealed that there was no set search radius distance to use on a 

given data set. It was suggested by the author to use a distance between one-third and two-thirds 

of the longest transect distance of the site, and then to reduce the distance incrementally.  

According to a personal correspondance from the author, Tom Purucker of USEPA:  

The Moran's I secondary sampling design picks the window (with the given radius) 

centered on the grid node that has the highest sampling variability. So for a very small 

window (100 m) it selects areas near where the two points are most dissimilar and very 

close to each other. As you zoom out it picks up different points, and again selects 

windows where points are most dissimilar within the circular window centered on each 

potential sample location. However, once it gets very big, then each potential sampling 

window starts to include almost all the points, so that the variance calculation is 

practically the same for all potential sites, and only changes based upon the 1–2 samples 

that are not included in the prospective window. This ends up selecting locations that 

only have tiny increases in variance relative to other prospective sites, so is a bit random. 

That is why selection of the radius should not be greater than 2/3 of the longest transect 

of the site, to avoid results that are not really very meaningful in terms of having highest 

variance (or whatever) since they all end up being very similar (Purucker, 2012, personal 

email). 

 

 

Based on this information the user then would have a potential ceiling radius distance at 

two-thirds of the longest transect of the site. Even at this distance it is unclear whether or not the 

variance calculation would be too homogenous for the data. Another problem occurs at the 

opposite end of the spectrum. Clearly, there will be a minimum distance, such as radii in the 

single digits, and potentially in the double digits, where not enough information is obtained and 

samples will not be placed. It is feasible to run the program multiple times at different radii to 
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pinpoint the distance where samples can be placed and call this the minimum radius distance, but 

will this be the most optimal design? Indeed, how does the user determine which design between 

the minimum and the feasible maximum radius distance is the most optimal? 

A distribution of potential sample points comprised of potential sample points from this 

range of LISA radii distances could potentially reduce some of the uncertainty of the LISA 

search window issue and increase optimality. The user would be able to export these potential 

sample points from SADA for each search radius into a Geographic Information System, such as 

ArcMap, to visualize the full distribution. The user would then be able to choose potential 

sample points randomly to prevent bias and retain statistical significance. 

 

B.   Distribution Parameters 

The longest transect of Parcel 1 was detemined to be approximately 2500 meters. At the 

suggestion of beginning with a distance between one-third and two-thirds of the longest transect 

of the site it was decided to make the maximum radius distance of the search window one-half of 

the longest transect, which would be 1250 meters. The minimum search radius was set to 100 

meters. Each secondary sampling design was run in SADA while incrementally decreasing the 

search distance radius by 50 meters. This provided, for each method, 24 secondary sample 

designs with 10 new samples per design, for a total distribution of 240 potential samples. Since 

contaminants can only be considered individually in SADA, this process was run for both arsenic 

and lead, for each LISA secondary sampling method.   
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C.   Results 

The coordinates for these potential sample points were imported into ArcMap as point 

shapefiles. Each potential sample point contained the following information: Easting and 

Northing coordinates, LISA method used, search radius distance used, and contaminant based on 

(arsenic or lead). Twenty-four iterations of 10 samples, each at varying search radii, were run for 

the LISA methods. In the following sections, the first of the pair of figures for each contaminant 

reflects the distribution of 240 potential sample locations. The second of the pair of figures 

illustrates a random sample design of 10 samples pulled from each distribution. 

 

1.   Ripley’s K 

  a.   Arsenic 

The Ripley’s K method places potential samples in areas of lower 

sampling density. The distribution seen in Figure 34 reflects this as many potential sampling 

points cluster in the corners and on the boundaries of the site where sampling is minimal. There 

is a large concentration in the upper right corner of the site, which is unsurprising given the 

relative isolation of the four samples in this location. 

 

  b.   Lead 

The distribution (Figure 36) based on lead contamination is very similar to 

the arsenic distribution. Since the Ripley’s K method is not based on variance measurements this 

is not surprising. 
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Figure 34. Distribution of potential sample points for arsenic using Ripley’s K method. 

 

Figure 35. Ten samples chosen randomly from the Ripley’s K distribution of potential samples 

for arsenic. 
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Figure 36. Distribution of potential sample points for lead using Ripley’s K method. 

 

 

Figure 37. Ten samples chosen randomly from the Ripley’s K distribution of potential samples 

for lead. 
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2.   Moran’s I 

  a.   Arsenic 

The Moran’s I method places potential samples in areas of high local 

sample variance. The majority of the distribution focuses on the high variance created by the 31 

ppm arsenic sample, which is surrounded by samples of much lower concentration in the 

southeastern corner of the site. There are a few clusters around samples with slightly elevated 

concentrations in the western and northwestern parts of the site. Samples that cluster in the 

corners or on boundaries mostly occurred from the search windows with larger radii. This can be 

seen in Figures 38 and 39. 

 

  b.   Lead 

   Much like the arsenic distribution, the lead distribution focuses chiefly 

around the highest lead concentration of the site, 499 ppm. The two distributions are very similar 

spatially. This seems to be a testament to the spatial correlation between arsenic and lead sample 

concentrations. Higher arsenic and lead concentrations are found together, while lower arsenic 

and lead concentrations are found together. This can be seen in Figures 40 and 41. 
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Figure 38. Distribution of potential sample points for arsenic using Moran’s I method. 

 

Figure 39. Ten samples chosen randomly from the Moran’s I distribution of potential samples for 

arsenic. 
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Figure 40. Distribution of potential sample points for lead using Moran’s I method. 

 

Figure 41. Ten samples chosen randomly from the Moran’s I distribution of potential samples for 

lead. 
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3.   Geary’s C 

  a.   Arsenic 

The Geary’s C method places potential samples in areas of local negative 

correlation. While there are similarities to the Moran’s I method, such as many samples 

clustering around the high concentrations in the south, west, and northwest of the site, the 

Geary’s C method seems to disperse the potential samples more evenly throughout these areas as 

well as into other areas of the site. The 33 sample points in the northeasternmost corner of the 

site contain potential samples points with LISA search windows as low as 600 meters, but mostly 

consist of sample points with LISA search windows in the 1000–1250 meters range. This would 

seem to be a case where once a potential sampling window gets very large and starts to include 

almost all the points, the correlation calculation is practically the same for all potential sites, and 

only changes based upon the 1–2 samples that are not included in the prospective window. This 

ends up selecting locations that only have tiny increases in negative correlation relative to other 

prospective sites, and these locations may tend to be located on the edges of the site. 

  b.   Lead 

Figures 42, 43, 44, and 45 show that once again the lead distribution 

mimics the arsenic distribution in overall trends.  
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Figure 42. Distribution of potential sample points for arsenic using Geary’s C method. 

 

Figure 43. Ten samples chosen randomly from the Geary’s C distribution of potential samples 

for arsenic. 
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Figure 44. Distribution of potential sample points for lead using Geary’s C method. 

 

Figure 45. Ten samples chosen randomly from the Geary’s C distribution of potential samples 

for lead. 



 

77 

IX. DISCUSSION 

 

There are several issues regarding secondary sample design in SADA. The bulk of them 

deal with parameters left to the discretion of the user: number of samples placed, tie-break 

options, sample separation distance, grid specifications, and the LISA search radius. In addition, 

the sample distributions exhibit a degree of edge effects and redundancies. Although manual user 

input allows the tool a high amount of flexibility, this also creates a situation of uncertainty and 

potential misuse within the remediation process. While most of these parameters can logically be 

modeled on real world variables or constraints, the LISA search radius is not intuitive and 

different distances can vastly affect the outcome of the secondary sampling design. The goal of 

this study was to take some of the uncertainty out of the LISA algorithm by using a wide range 

of search radii to create a potential sample distribution; one that the user could use as a pool of 

potential sample points. 

Some uncertainty inevitably remains. The decision to use the range and interval 

performed in the study is not without question. Though this study provides a substantial amount 

of potential sample points optimizing the interval would be a logical next step. It is reasonable to 

expect that this study did not completely optimize the potential sample point distribution—it is 

likely that increasing the interval one meter at a time would be time consuming and redundant, 

but a 50-meter interval may not have captured the most optimal distribution; however it is 

arguable that it is a good basis for future studies.   
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Figure 46.  Distribution of potential sample points for lead using Moran’s I method at a LISA 

search window range from 100 meters to 2500 meters in intervals of 50 meters. 

 

 

 

 

 

An argument can be made, however, for the range, as well as the maximum search radius 

distance. To explore what occurs when a search distance beyond one-half of the larger transect is 

used search distances were run in 50 meter intervals from 1300 meters to 2500 meters (the 

distance of the longest transect of the site), for the Moran’s I method using lead contamination.  

As shown in Figure 46, in addition to being placed in the southern portion of the site, those 

potential sample points that are placed using a search radius beyond one-half of the longest 

transect of the site are mostly focused in a cluster in the northeast corner of the site. This is 

curious behavior given how the Moran’s I method operated at lower radii. There is also more 

dispersion throughout the site in general. This can be explained by only showing the secondary 

sample design that used a 2500 meter search window, as shown in Figure 47. This dispersive, 
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seemingly random behavior is atypical to the Moran’s I method. The potential explanation for 

these phenomena once again has to do with variance measurements that include all or practically 

all of the sample points in the site. In the case of search windows at distances between 1300 

meters and 2450 meters, this serves to progressively push potential sample points into the  

 

 

 

Figure 47. Ten samples placed using the Moran’s I method and a 2500 meter LISA search radius. 

 

 

northeast corner of the site. This could be influenced by the geography of the northeastern 

section of the site, the variance measurements due to the lead concentrations present in this 

section of the site, or a combinatory effect of the two. In the case of the 2500 meter search 

radius, using a search window as large as the longest transect of the site seems to return a 
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random output and should be discouraged when developing secondary sampling designs such as 

these. 

When a user draws a random sample from these distributions it is worth noting their 

trends. As seen in Figures 34 and 36, using Ripley’s K, many potential sample points in the 

distribution cluster in the northeast corner of the site due to the properties of the statist ic and the 

nature of the site. Likewise, both random samples (Figures 35 and 37) contain a number of 

samples in the northeast corner. On the other hand, even though the distributions for arsenic and 

lead  from the Geary’s C method (Figures 42 and 44) are very similar (due to contaminant 

correlation), the random sample designs are quite different, as shown in Figures 43 and 45.  

There is nothing inherently wrong with this, given the nature of random sampling, but it does 

emphasize the need for samplers/users to be knowledgable on the various LISA functions and 

uses and have a clearly defined goal when developing a secondary sample design. 

The redundencies and edge effects present in the potential site sample distributions are 

exhibited in the random samples. The SADA software program should include a methodology 

for choosing samples from the identified site sample distributions. Ideally this methodology 

would reduce the redundancies that occur within the site sample distributions and that 

subsequently occur in the final secondary sample designs. One potential idea is to incorporate a 

weighting methodology, with samples along the boundaries of the site being weighted to reduce 

their probability of being chosen. Another method could potentially modify the program so that 

samples located in boundaries and corners of the site would not be considered in the final 

secondary sample designs. Perhaps this could be employed by incorporating a polygon at the 

borders of the site and the potential sample points located within this polygon would be 

identified as having a zero probability of being contaminated. 
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Ultimately, the hope is that the developers of SADA may be able to use this study to 

develop an algorithm that uses site parameters to create a distribution of potential sample points 

with a range of LISA radii, as done here. The upper bound of this range could be found via 

iterations, the inflection point being when larger ranges are no longer providing differences in 

variance. 

From this distribution, SADA could randomly, or via another methodology, choose the 

number of potential sample points requested by the user while also accounting for redundancies 

in sampling and edge effects. This could streamline the tool further, while alleviating some of the 

uncertainty inherent in the LISA methods. 
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X.  CONCLUSION 

 

Current regulations for remediation do not factor in to processes that account for the 

spatial distribution of contaminants. Spatially defined information that takes into account data 

gained from previous sample studies would allow site investigators to visualize the extent of the 

contamination and minimize uncertainty while providing accurate results to reduce costs during 

data collection and remediation. A competent tool with a comprehensive and cost-effective 

approach to developing sampling designs, SADA has the ability to be utilized in a range of uses, 

including Phase III environmental site assessments (ESAs), brownfield redevelopment, or other 

environmental risk management or site remediation situations. 

Secondary sampling designs based on historical investigation data can be created by 

SADA by utilizing model- (geospatial) based sampling designs. The program is able to mimic 

real world constraints and parameters and deliver potential secondary sampling designs with 

minimal costs. Secondary sampling is often performed to define remediation areas and clean 

areas. However, there are no clearly defined methods to determine both the number and location 

of secondary samples. The LISA methods as implemented using the SADA software offer a 

methodology for the placement of these secondary samples. A major drawback of these methods 

is the uncertainty involved in the range of input parameters. This thesis offers an objective means 

to reduce the uncertainty inherent in these parameters by employing an iterative function. 

The LISA search window greatly affects the outcome of the secondary sample designs.  

The LISA methods, however, if developed using effective guidelines such as those presented 



 

83 

here, represent powerful tools to be used during the risk assessment and clean-up process. A 

methodology is recommended to reduce the redundancies that occur within the site sample 

distribution and that subsequently occur in the secondary site sample design. 
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APPENDIX 

DETERMINING A THRESHOLD DECISION CRITERIA 

The threshold decision criteria will be based on soil screening levels (SSLs) developed by 

USEPA. To compute the arsenic screening level, USEPA’s Regional Screening Level Calculator 

for Chemical Contaminants at Superfund Sites (http://epa-prgs.ornl.gov/cgi-

bin/chemicals/csl_search) will be used to generate generic SSLs for the chronic ingestion of 

arsenic in a residential scenario. Soil screening levels are concentrations of contaminants in soil 

that are designed to be protective of exposure in a residential setting. A residential scenario is 

used given the site’s proximity to a residential area (Osiecki, 2011). Generic SSLs will be used 

instead of site-specific SSLs (equations given by USEPA) because site-specific SSLs require soil 

properties, which are not available (USEPA, 1996). Two SSLs will be generated for arsenic from 

the RSL calculator—one for the carcinogenic endpoint and one for the non-carcinogenic 

endpoint.   

 

 

 

TABLE II 

 

DEFAULT VALUES FOR ARSENIC RESIDENT EQUATION INPUTS FOR SOIL 

 

Variable Value 

TR (target cancer risk) unitless  0.000001 

EDr (exposure duration - resident) year  30 

ETrs (exposure time - resident) hour  24 

EDc (exposure duration - child) year  6 

EDa (exposure duration - adult) year  24 

BWa (body weight - adult) kg  70 

BWc (body weight - child) kg  15 

SAa (skin surface area - adult) cm
2
/day  5700 

SAc (skin surface area - child) cm
2
/day  2800 

THQ (target hazard quotient) unitless  1 

LT (lifetime - resident) year  70 

http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search
http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search
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TABLE II 

 

DEFAULT VALUES FOR ARSENIC RESIDENT EQUATION INPUTS FOR SOIL 
 

Variable Value 

IRSa (soil intake rate - adult) mg/day  100 

IRSc (soil intake rate - child) mg/day  200 

AFa (skin adherence factor - adult) mg/cm
2
  0.07 

AFc (skin adherence factor - child) mg/cm
2
  0.2 

IFSadj (age-adjusted soil ingestion factor) mg-year/kg-day  114 

DFSadj (age-adjusted soil dermal factor) mg-year/kg-day  361 
IFSMadj (mutagenic age-adjusted soil ingestion factor) 
mg-year/kg-day  489.5 
DFSMadj (mutagenic age-adjusted soil dermal factor) mg-
year/kg-day  1445 

ED0-2 (exposure duration first phase) year  2 

ED2-6 (exposure duration second phase) year  4 

ED6-16 (exposure duration third phase) year  10 

ED16-30 (exposure duration fourth phase) year  14 

City (Climate Zone) PEF Selection  Default 

As (acres) PEF Selection  0.5 

Q/Cwp (g/m
2
-s per kg/m

3
) PEF Selection  93.77 

PEF (particulate emission factor) m
3
/kg  1359344438 

A (PEF Dispersion Constant)  16.2302 

B (PEF Dispersion Constant)  18.7762 

C (PEF Dispersion Constant)  216.108 

V  (fraction of vegetative cover) unitless  0.5 

Um  (mean annual wind speed) m/s  4.69 

Ut  (equivalent threshold value)  11.32 

F(x) (function dependant on Um/Ut) unitless   0.194 

City (Climate Zone) VF Selection  Default 

As (acres) VF Selection  0.5 

Q/Cwp (g/m
2
-s per kg/m

3
) VF Selection  68.18 

foc (fraction organic carbon in soil) g/g  0.006 

&rho;b (dry soil bulk density) g/cm
3
  1.5 

&rho;s (soil particle density) g/cm
3
  2.65 

&theta;w (water-filled soil porosity)  Lwater/Lsoil  0.15 

T (exposure interval) s  950000000 

A (VF Dispersion Constant)  11.911 

B (VF Dispersion Constant)  18.4385 

C (VF Dispersion Constant)  209.7845 

Retrieved from - http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search (June, 2012) 

http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search
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The regional screening level (RSL) calculator and the SSL documentation does not 

include SSLs for lead “because EPA has issued separate documents that specify risk-based 

concentrations for these contaminants in soil.” (USEPA, 2002, A-3). Since the SSLs are based in 

part on reference dose (RfD), and the USEPA has no consensus for an inorganic lead RfD, 

USEPA evaluates lead exposure based on blood-lead modeling, using the Integrated Exposure-

Uptake Biokinetic Model. For the purpose of screening 400 ppm is recommended for residential 

soils. Caution should be used, however, when both water and soil are being assessed in a risk 

assessment, as the combination can result in a higher blood-lead level if these values aren’t 

conservative enough (Osiecki, 2011). This is beyond the scope of this paper, however. 

Once the parameters are input into the RSL calculator for arsenic (chronic ingestion of 

soil in a residential scenario), the calculator provides both the assumptions and values used in the 

equation, and the resident risk-based SLs for soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

87 

 

TABLE III 

RESIDENT RISK-BASED ARSENIC SCREENING LEVEL FOR SOIL 

 

GIAB
S 

AB
S 

Volatilizatio
n Factor 
(m

 3
/kg) 

Soil 
Saturation 

Concentratio
n 

(mg/kg) 

Particulat
e 

Emission 
Factor 
(m

 3
/kg) 

Ingestion 
SL 

TR=1.0E-6 
(mg/kg) 

Dermal 
SL 

TR=1.0E-
6 

(mg/kg) 

Inhalation 
SL 

TR=1.0E-6 
(mg/kg) 

1 0.03 - - 1.36E+09 4.27E-01 4.49E+00 7.69E+02 

 

Carcinogenic SL 
TR=1.0E-6 

(mg/kg) 

Ingestion 
SL 

HQ=1 
(mg/kg) 

Dermal 
SL 

HQ=1 
(mg/kg) 

Inhalation 
SL 

HQ=1 
(mg/kg) 

Noncarcinogenic 
SL 

HI=1 
(mg/kg) 

Screening 
Level 

(mg/kg) 

3.90E-01 2.35E+01 2.79E+02 2.13E+04 2.16E+01 3.90E-01 ca
a 

Retrieved from - http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search (June, 2012) 

a
ca=Cancer, nc=Noncancer (Where nc SL < 100 x ca SL) 

 

 

The screening level recommended by the RSL calculator is 0.4 ppm which is the 

carcinogenic screening level (SL). This is due to the non-carcinogenic SL being less than 100 

times the carcinogenic SL. The noncarcinogenic SL is based on a hazard quotient of 1, and the 

carcinogenic SL is based on a total risk equal of 1.0E-6 (a risk of acquiring cancer of 1 in 1 

million). The problem with this conservative value of 0.4 ppm is that naturally occurring arsenic 

Chemical CAS 
Number 

Ingestion 
SF 

(mg/kg-
day)

-1 

SFO 
Ref 

Inhalation 
Unit Risk 
(ug/m

 3
)
 -1 

IUR 
Ref 

Chronic 
RfD 

(mg/kg-
day) 

RfD 
Ref 

Chronic 
RfC 

(mg/m
 3
) 

RfC 
Ref 

Arsenic, 
Inorganic 

7440-38-
2 

1.50E+00 I 4.30E-03 I 3.00E-04 I 1.50E-05 C 

http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search
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exceeds this level in all parts of the country (Osiecki, 2011). For the purpose of the following 

scenarios the total non-carcinogenic SL of 22 ppm, which is based on the following equation, 

will be used: 

 

 
 

 
 

Figure 48.  The residential soil land use equation, containing the ingestion, dermal, and 

inhalation exposure routes for noncarcinogenic ingestion.  Retrieved from - 

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/usersguide.htm (June, 2012) 

 

 

 

 

It is worth noting that the direct ingestion of soils is one of the most common routes of 

human exposure to contaminants in the residential setting, and inorganic forms of metals are not 

likely to cross biological membranes as easily, which supports ingestion exposure over dermal 

absorption (USEPA, 1996). However, arsenic is a soil contaminant that USEPA evaluates for 

dermal exposures. In addition, USEPA considers ingestion/dermal absorption SSLs for most 

metals to be adequately protective of fugitive dust exposures SSLs for the residential scenario 

(USEPA, 2002). While this evidence points to using the non-carcinogenic ingestion SL of 24 

ppm, or perhaps a combined ingestion/dermal absorption SL, the more conservative total non-

carcinogenic SL of 22 ppm, which combines all the applicable exposure routes, will be used. 

 

 

 

 

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/usersguide.htm
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